Call for Application - Erasmus + program "Staff Training" Modules offered for participants at the Eberswalde University for Sustainable Development (EUSD) during winter term 2018* | Module | Module Component | Aim | Lol** | Study programme | | • | Mandatory or elective module | Teaching
Form | Workload in credits | |--|--|--|---------|--|----|------------------------------|------------------------------|---|---------------------| | European IFITT
Masterclass on e-Tourism | | See the program: http://www.ifitt.org/european-ifitt-
masterclass/ | English | MA Nachhaltiges
Tourismusmanagement | 1. | 17.0921.09.18 | not mandatory | Lecture,
Practical
exercise | 3 | | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | | Data Analysis &
Management I | Statistics I | Students know selected descriptive and analytical statistical methods and are enabled to accomplish environmental data analyses. | English | MA Forest Information
Technology | 1. | 15.0119.01.18 | mandatory | Lecture,
Practical
exercise | 3 | | Geomatics I | Geographic Information
Systems I (Fundamentals
of Geographic
Information Systems) | Students know theoretical fundamentals of Geographic Information Systems (GIS) and are enabled to use GIS for various purposes of natural resources management. | English | MA Forest Information
Technology | 1. | expected calendar
week 45 | mandatory | Lecture,
Seminar,
Practical
exercise | 3 | | Geomatics I | Database Management | Students know theoretical fundamentals of databases and are able to plan and to implement databases and to retrieve especially spatial data from databases in client-server environments. | English | MA Forest Information
Technology | 1. | expected calendar
week 44 | mandatory | Lecture,
Seminar,
Practical
exercise | 3 | | Geomatics II | Geographic Information
Systems II (Digital
Cartography) | Students are familiar with basic of digital cartography and are enabled to store, edit and present spatial data using standard GIS software | English | MA Forest Information
Technology | 1. | expected calendar
week 46 | mandatory | Lecture,
Seminar,
Practical
exercise | 3 | ^{*}The list also includes a small selection of modules in German language. You can select any other modules in German language at EUSD if your language skills are sufficient. | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | |---|---|--|---------|-------------------------------------|----|------------------------------|-----------|---|---| | Geomatics II | Remote Sensing | Students know theoretical fundamentals and are enabled to use remote sensing as one of forest and environment monitoring tools. | English | MA Forest Information
Technology | 1. | expected calendar
week 47 | mandatory | Lecture,
Seminar,
Practical
exercise | 3 | | Technological
Fundamentals | Computer Science & Technology | Students know topical fundamentals of computer science and technology including current computer hardware and possess practical skills using different computer environments and operating systems. | English | MA Forest Information
Technology | 1. | expected calendar
week 41 | elective | Lecture,
Practical
exercise | 3 | | | Automated Data
Collection | Students know principles and technological solutions of automated data collection, have an overview of devices applied in forestry and environment, and have practical experience with selected devices | English | MA Forest Information
Technology | 1. | expected calendar
week 42 | elective | Lecture,
Seminar,
Practical
exercise | 3 | | Landscape Analysis & Prediction | Landscape Systems
Analysis | Students are enabled to understand concepts, principles and methods of landscape systems analysis and are trained to select and to apply different quantitative methods of landscape systems analysis for varying targets. | English | MA Forest Information
Technology | 1. | expected calendar
week 44 | elective | Lecture,
Practical
exercise | 3 | | Landscape Analysis & Prediction | Ecosystem Modelling | Students have a principal understanding of notion and approaches of ecosystem modelling and have basic practical skills to plan, develop and apply models of ecosystem related target areas. | English | MA Forest Information
Technology | 1. | expected calendar
week 51 | elective | Lecture,
Practical
exercise | 3 | | Advanced Remote
Sensing & Forest Change
Detection | Advanced Remote
Sensing & Forest Change
Detection | Students are enabled to use remote sensing and geographic information system in different applications related to forest protection and forest change detection. | English | MA Forest Information
Technology | 3. | expected calendar
week 43 | elective | Lecture,
Seminar | 4 | | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | |--|---|--|---------|--|----|---------------------------------|-----------|---|---| | Collection and Analysis of
LiDAR data | Collection & Analysis of LiDAR data | Goal: Students are familiar with the technological principles of LiDAR approaches and are able to preprocess and analyze LiDAR data and to display and communicate related results. | English | MA Forest Information
Technology | 3. | expected calendar
week 40 | elective | Lecture,
Seminar,
Practical
exercise | 4 | | Scientific Research & Organization | Scientific writing and presenting | Students know the fundamentals of effective scientific writing and oral presenting. | English | MA Global Change Management & MA Forest Information Technology | 1. | expected calendar
week 49 | elective | Lecture,
Seminar,
Practical
exercise | 3 | | Human wellbeing and
development as result of
ecological and social
processes and services | Students are enabled to understand and analyse dimensions of and factors contributing to human wellbeing. They elaborate a framework for the analysis of development goals and challenges going beyond a strict dichotomy between factual and value judgements. | | English | MA Global Change
Management | 1. | expected calendar
week 41-43 | mandatory | Lecture,
Seminar,
Practical
exercise | 8 | | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | |---|--|--|---------|-------------------------------------|----|---|-----------|---|---| | Fundamentals of systems functionality and change | linteractions) and the key attributes required for sustainable functioning. They can l | | | MA Global Change
Management | 1. | voraussichtlich
Kalenderwochen
44 | mandatory | Lecture,
Seminar,
Practical
exercise | 8 | | Threats & risks to systems functionality and contributing factors | threats for the functional human wellbeing. These socioeconomic and gover about risk management to frisks and blindspots recausal factors. They have | systemically inventory and analyse factors that lead to lity of ecological and social systems and therefore for embrace, among others, factors from biophysical, rnance domains. The students apply basic knowledge to the development of future scenarios and identification lated to the dynamics of the identified threats and their practiced the assessment of criticality and strategic reats and their contributing factors, which make up global | English | MA Global Change
Management | 1. | 08.0126.01.18 | mandatory | Lecture,
Seminar,
Practical
exercise | 8 | | Carbon sequestration and accounting | Students understand the carbon cycle with special reference to forests, soils and forest products. They are qualified to develop and critically reflect forest growth scenarios and have acquired basic knowledge of the purpose and the implementation of life cycle analysis (LCA), product carbon footprints (PCF) and corporate carbon footprints (CCF). | | English | MA Global Change
Management | 1. | expected calendar
week 47 and 48 | elective | Lecture,
Practical
exercise | 6 | | Ecosystem models and concepts under global change | Remote sensing for global monitoring | Students are able to select main fields and apply possible practical application of remote sensing techniques with a landscape ecological approach. | English | MA Global Change
Management | 1. | expected calendar
week 50 | elective | Lecture,
Seminar | 3 | | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | |--|---|---|---------|--|-------|------------------------------|-----------|---|------------------------------------| | Ecosystem models and concepts under global change | Ecosystem Modelling | Students have a principal understanding of notion and approach of ecosystem modelling and have basic practical skills to plan, develop and apply models of ecosystem related target areas. | English | MA Global Change Management & MA Forest Information Technology | 1. | expected calendar
week 51 | elective | Lecture,
Seminar,
Practical
exercise | 3 | | Global change - research and scientific outreach | Scientific writing and presenting | Students are enabled to apply the fundamentals of effective scientific writing, visualisation of scienfitic results as well as oral presenting. | English | MA Global Change
Management | 1. | expected calendar
week 49 | mandatory | Lecture,
Seminar,
Practical
exercise | 3 | | Alternative Wald- und
Holznutzungsformen | Nachhaltige Produktion
von holzartiger Biomasse | Die Studierenden sind befähigt, wichtige Kenngrößen des Stoffhaushalts von Wäldern zu quantifizieren und die Nachhaltigkeit der Produktion von holzartiger Biomasse in der Land- und Forstwirtschaft zu beurteilen. Verwertungsmöglichkeiten für Biomasse unter Berücksichtigung der politischen Rahmenbedingungen sind bekannt und können beispielhaft auf Betriebe angewendet werden. Ertragsschätzungen können ebenso wie ökonomische Gesamtabschätzungen von Managementkonzepten entwickelt werden. | Deutsch | BA International Forest
Ecosystem
Management und BA
Forstwirtschaft | 3. | expected calendar
week 49 | elective | Lecture,
Exercise | 3 | | Master Class Course
Conference Renewable
Energies (MCCC) | see program: http://www.hnee.de/de/Forschung/Wissenschaftliche-
Tagungen/MCCC-Renewable-Energies/13Master-Class-Course-Conference-
Renewable-Energies-2020-Neue-Ziele-braucht-das-Klima-E9424.htm | | Deutsch | for nearly all study
programmes (MA and
BA) | 1./3. | expected calendar
week 49 | elective | Lectures | 2-6 (depending on study programme) | | Data Analysis &
Management I | Programming I | Students understand the theoretical fundamentals of computer programming and are able to create application programs of limited extent and function in a systematic way using an object-oriented programming language. | English | MA Forest Information
Technology | 1. | expected calendar
week 43 | mandatory | Lecture,
Practical
exercise | 3 | |--|---|--|---------|--|------------------------------------|------------------------------|-----------|-----------------------------------|------------------------------------| | Globale Umweltsituation und Ressourcenschutz | Überblick zur Grundstruktur globaler MenschUmwelt-Beziehungen, Klassifikation globaler Umweltveränderungen, Haupttrends des globalen Wandels, Syndrom-Ansatz des WBGU; Umwelt und Entwicklung: Überblick zu internationalen Umweltkonventionen (CCD, CBD, CITES, Bonner Konvention etc.), Beispiele aus der Entwicklungszusammenarbeit (Erfahrungsberichte); Planspiel zu globalen Umweltabkommen | | Deutsch | BA Landschaftsnutzung
und Naturschutz
(LaNu); BA
International Forest
Ecosystem
Management (IFEM)
and BA Forstwirtschaft | 5. LaNu;
3. FoWi
and
IFEM | expected calendar
week 49 | elective | Seminar | 4-6 (depending on study programme) | | Existenzgründung in der
Landwirtschaft | Existenzgründungen in der Landwirtschaft, Einstiegsmöglichkeiten,
Finanzierungsformen, Rechtsformen, Formalitäten, Kommunikation mit
Geschäftspartnern und im familiären Kontext, Fördermöglichkeiten und Beratung | | Deutsch | MA Öko-
Agrarmanagement | 1. oder
2. | 04.1208.12.17 | elective | Seminar,
Exkursion | 6 |